

Pavement Management:

The Key to a Successful Road Maintenance Program

Session Agenda

- Introductions
- Getting to Know Your Roads
- Pavement Management Process & Components
- Options & Costs
- Benefits & Uses of a Pavement Management Plan
- Cost Benefit Value
- Remaining Service Life

Getting to Know Your Roads

What role do your roads play?

- Commuting
 - To and from work, school, doctors, stores
- Services
 - Police, fire, ambulance, mail, trash
- Commerce/Shipping
 - Merchandise, natural resources, food
- Tourism
 - Beaches, mountains, skiing, events
- Recreational
 - Walking, cycling

What happens when roads are...

- Snow covered or icy
- Flooded or washed out
- Closed by downed trees or powerlines
- Blocked by accidents
- Over-congested
- Deteriorated to an unsafe level

Your Most Valuable Asset

- Integral part of everyday life
- Largest financial asset in the community
- Can have significant impacts (positive and negative) on many aspects of town activities
- Is your network getting the attention it deserves?
- Do you have a plan for maintaining the network?

Simple Network Value Calculation

PRESENT DAY VALUE OF ROAD NETWORK								
	MILEAGE: UNIT CO			COSTS:				
	40	Paved Pavement \$70		/ ton				
	15	Gravel \$25		Gravel \$25 / ton		n		
Depth	PAVED ROADS							
(inches)	Material	Cost/SY	Miles	Width (ft)	SY		Cost	
4	Pavement	\$ 15.68	40	24	563,200	\$	8,830,976	
12	Gravel	\$ 11.31				\$	6,371,200	
	\$	15,202,176						
Depth	GRAVEL ROADS							
(inches)	Material	Cost/SY	Miles	Width (ft)	SY		Cost	
12	Gravel	\$ 11.31	15	20	176,000	\$	1,991,000	
	\$	1,991,000						
TOTAL VALUE OF THE NETWORK:							17,193,176	
ANNUALIZED DEPRECIATION AT 20 YEAR LIFE							859,659	

What causes Pavement Distress?

- Traffic volume
- Traffic loads
- Sunlight
- Water
- Trees/Vegetation
- Mix issues
- Construction issues
- Poor base

The Change in Road Maintenance

- Increased traffic volumes
- Increased heavy truck traffic
- Increased material costs
- Level or decreased budgets

The Perfect Storm for Road Maintenance

- How do you do more with less?
- What are your alternative options?

Keeping Up in Today's World

- Asset / pavement management
 - What it is?
 - How to implement?
 - How to use it most effectively?
- New treatments in the toolbox
 - Many options to choose from
 - Matching the treatment to the road
- Working with your customers (residents)
 - Education & communication
 - Managing expectations

VS.

The Importance of Having a Plan

- Do you know all of your roads?
 - Length
 - Width
 - Construction
 - Condition
- Do you have a maintenance plan?
 - What treatment(s)
 - When
 - At what cost

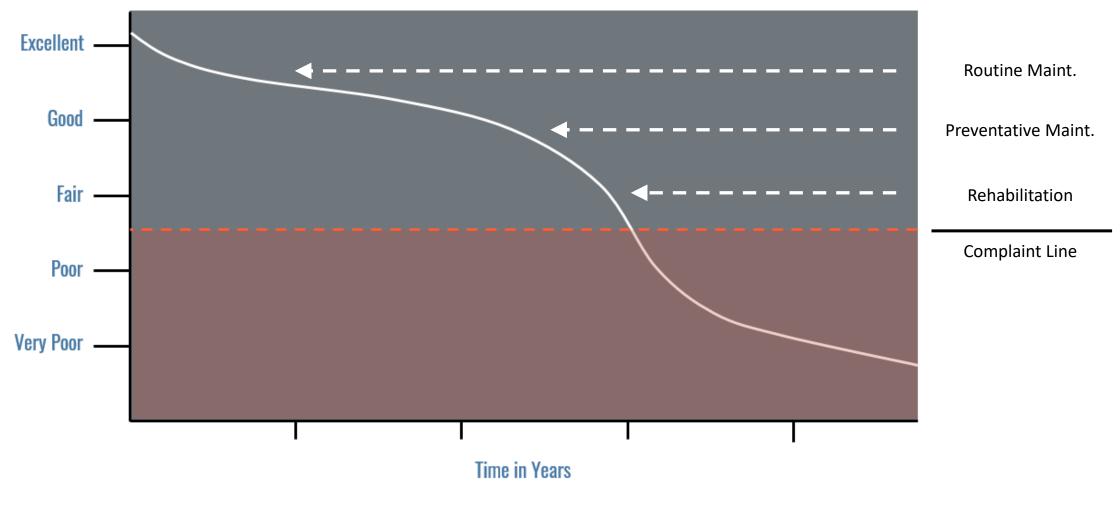
Pavement Management

Pavement Management Process & Components

Pavement Management

What is Pavement Management?

Pavement Management is the practice of planning pavement maintenance to maximize the value of the roadway network.

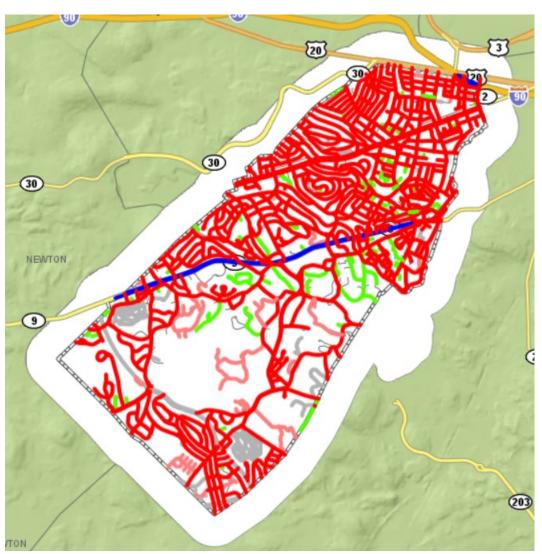

Enables you to perform the Right Repair at the Right Time on the Right Road!

Pavement Management

Life-Cycle Analysis

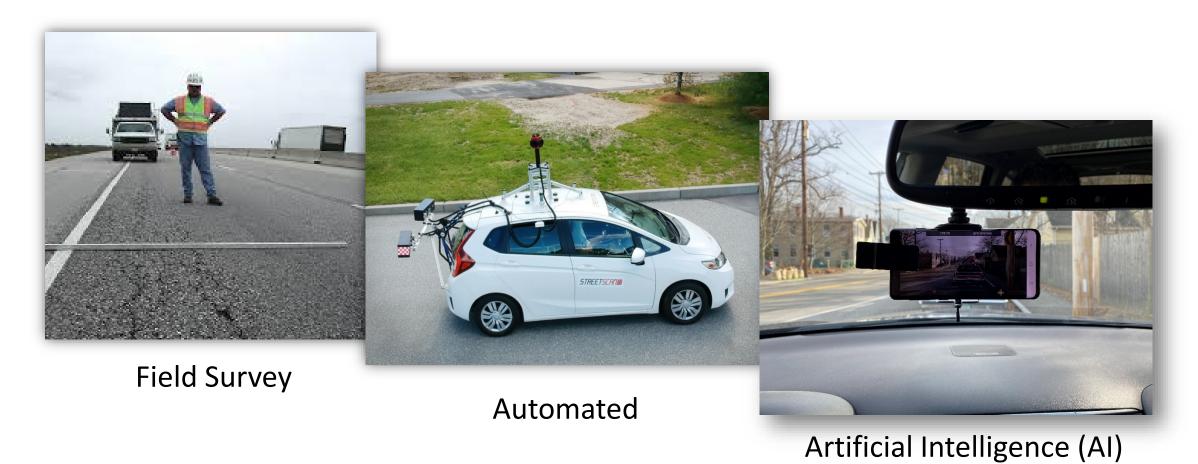
3-Step Approach

- Network Inventory and Data Collection
- 2. Analysis and Reporting
- 3. Capital Planning and Action Planning

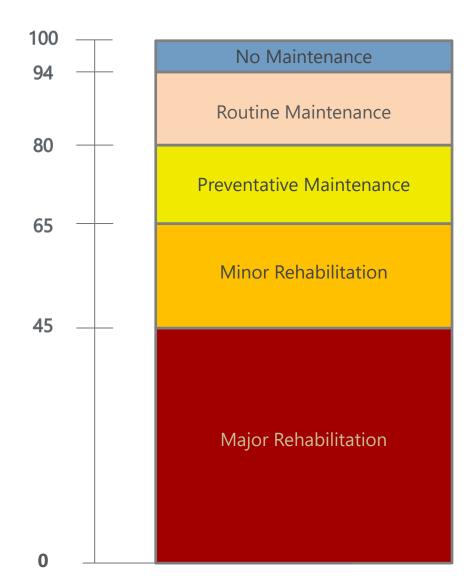


Network Inventory

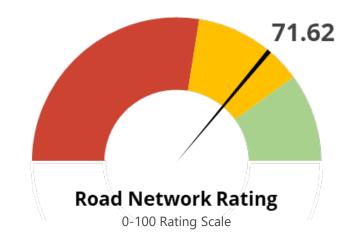
Classification	Miles
Arterial	7.24
Collector	13.79
Local	60.98
Local – Low Volume	17.53
Total Miles	99.54


Public vs Private vs State
 Maintained Roadways

Data Collection



Maintenance Categories

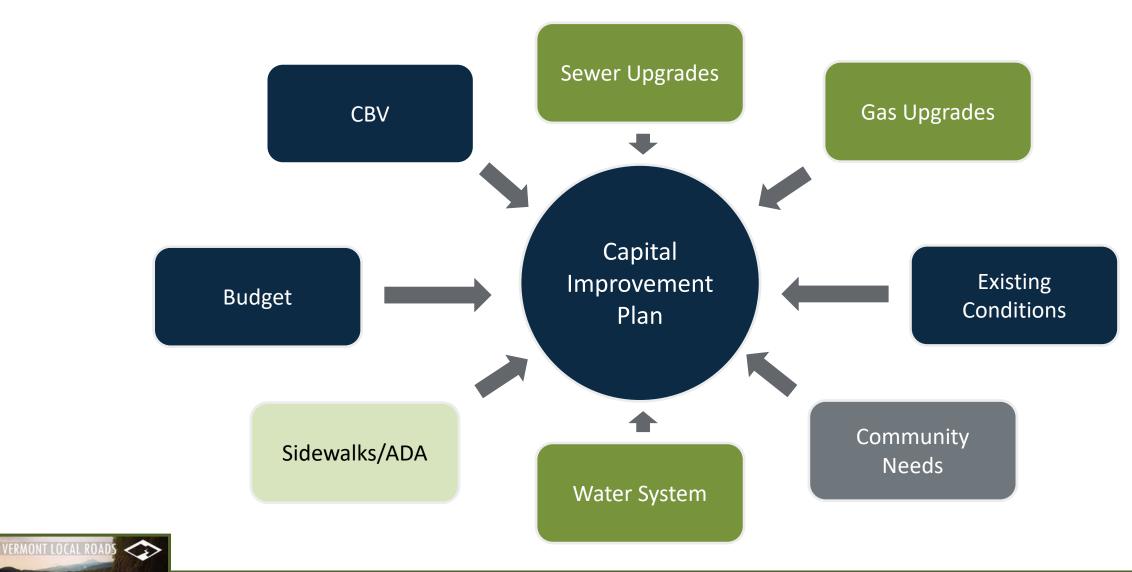

- Routine Maintenance \$0.50 \$2.00
 - Fog Seal
 - Crack Seal
- Preventative Maintenance \$2.50 \$10.00
 - Chip Seal
 - Microsurfacing
 - Cape Seal
 - Bonded Wearing Course
 - Shim and Overlay
- Minor Rehabilitation \$10.00 \$15.00
 - Minor Mill and Overlay
 - Hot In-Place Recycling
 - Cold In-Place Recycling
- Major Rehabilitation \$15.00 \$40.00
 - Major Mill and Fill
 - Cold In-Place Recycling
 - Full Depth Reclamation
 - Reconstruction

Analysis and Reporting

Repair Category	Length (Miles)	Square Yardage	Estimated Costs
No Maintenance Required	9.10	167,052	\$0
Routine Maintenance	13.32	221,189	\$110,595
Preventative Maintenance	43.14	700,939	\$5,607,517
Minor Rehabilitation	30.65	523,712	\$7,331,968
Major Rehabilitation	3.33	57,941	\$2,317,622
Totals	99.54	1,670,833	\$15,367,702

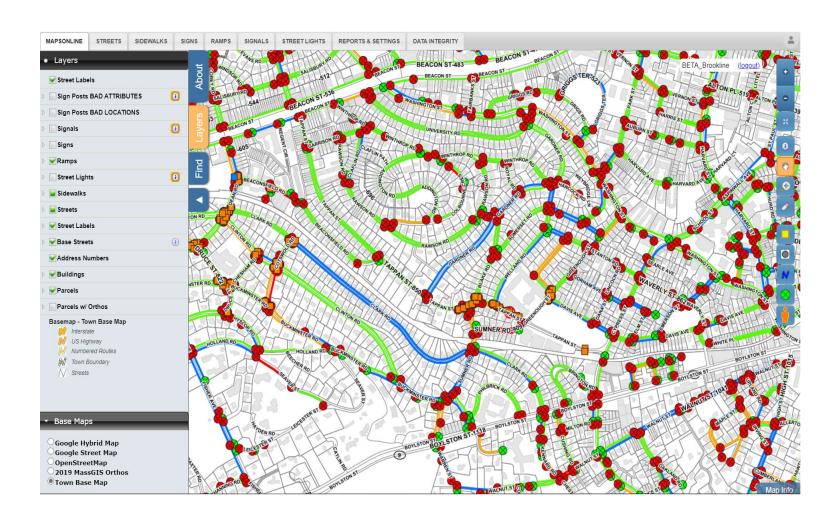
Existing Conditions – Backlog Report

ROUTINE MAINT.


PREVENTATIVE MAINT.

MINOR REHABILITATION

Capital Planning and Action Planning



Capture Critical Infrastructure Information

- Roadway Information
 - Length
 - Width
 - Square Yardage
 - Condition
 - Curbing
 - Drainage
 - Photographs
 - Construction History
- Sidewalks
 - Location
 - Condition
 - Material
 - Ramp Locations
- Signs
- Utility Information

Options & Costs

Considerations for PM Selection

- What information do you want included
- Linking to other systems/databases
- In-house database vs. Outsourced system (or a hybrid)
- Walking/windshield survey vs. Automated data collection
- Weighting/importance of different measured factors
- Treatment options and costing to be included
- How will the data be maintained/updated
- What services do you want included (consulting)

Every municipality is different...there is no one "right" choice

Potential Resources & Costs for PM Systems

- In-house staff
- Local Universities / interns
- Regional Planners
- Engineering firms / consultants
- Typical costs can vary from \$0 (not including your staff's time) to \$25,000+

Benefits & Uses of a Pavement Management Plan

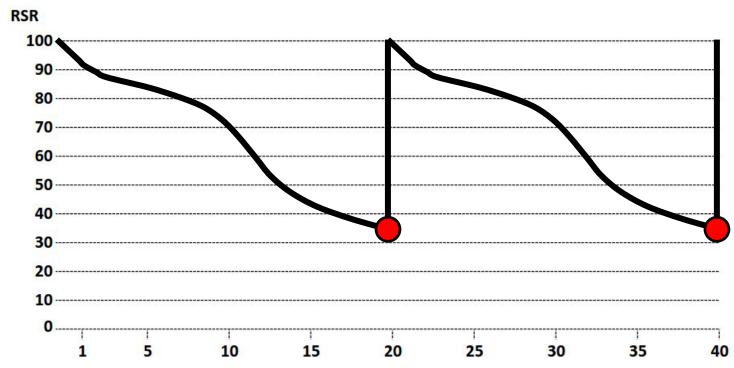
Why Pavement Management?

Allows users to become

PROACTIVE

rather than

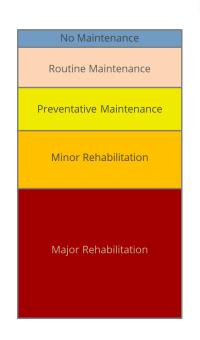
REACTIVE

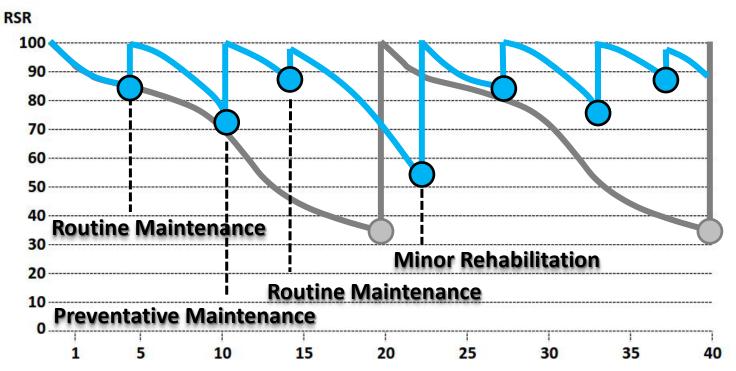


Why Pavement Management?

PROACTIVE vs. REACTIVE

No Maintenance Routine Maintenance Preventative Maintenance Minor Rehabilitation Major Rehabilitation


Repairs performed twice over 40 years... \$48 sy - \$60 sy over a 40 year period



Why Pavement Management?

PROACTIVE vs. REACTIVE

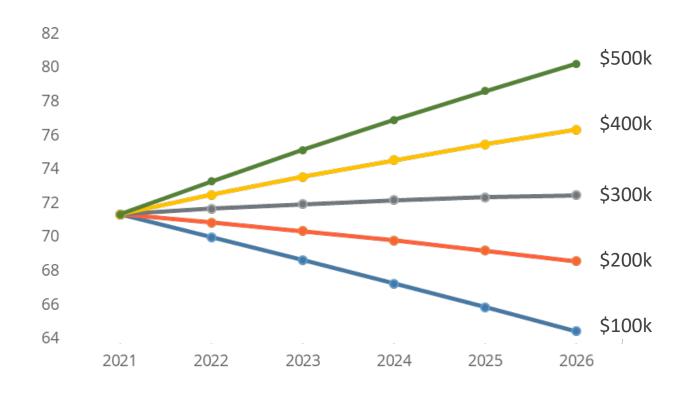
Maintenance and repairs 7 times over 40 years... \$30 sy over the same 40-year period

Justify Your Requests

Evaluate available funding...

- City/Town Funding
- Grants
- State Funding Programs

Depending on Situation.....


- Bonds/Borrowing
- Additional Town/City Funding

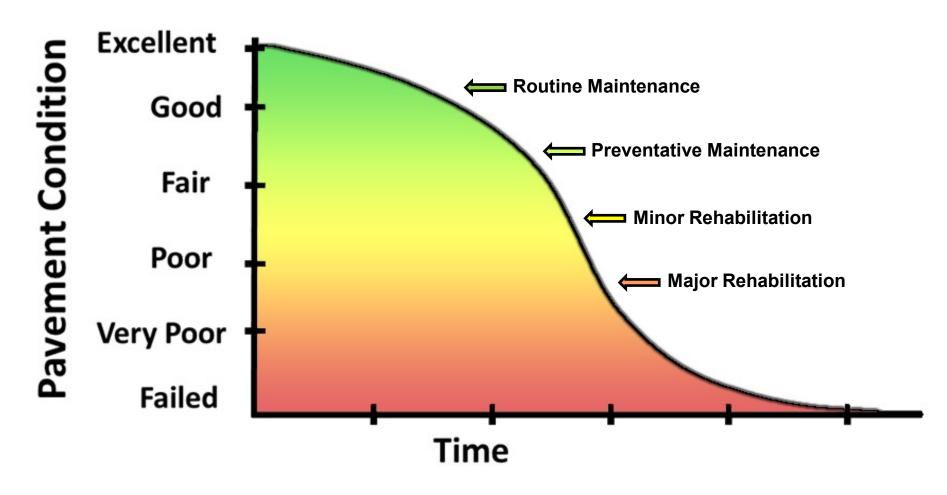
Scenario Building

- Follow industry standards for justifying your requests
- Customize Scenarios
 - Funding Levels
 - Repair Costs
 - Planning Approach
 - Bottom First
 - Balanced Plan
 - Inflation rates
 - Lifecycle of roads

Track & Communicate Results

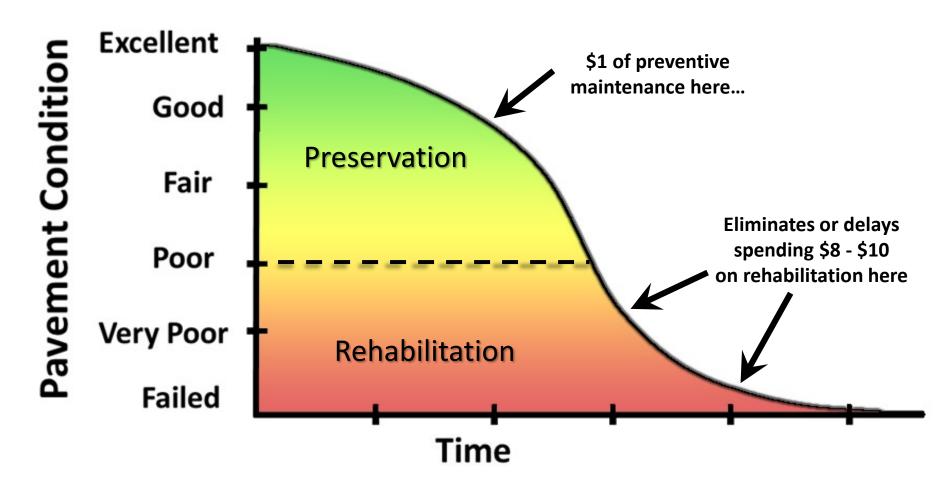
- Relay critical information
 - Without getting "into the weeds"
- Mapping progress
 - GIS
- Track your stats
 - Take credit for what you accomplish
- Coordinate with utilities
- Public Outreach

Pavement Management & Project Selection


- Treatment timing is critical
- Need to continuously be planning several years in advance
- One or two winters can have a significant impact on treatment effectiveness and options
- Having a pavement management system helps to identify the "window of opportunity"

"Right Treatment, Right Pavement, Right Time"

Pavement Treatment Options



Life of Pavement

Summary of Pavement Management Benefits

- Helps you "sell" your program and plan to the community/stakeholders
- Unbiased information to an industry standard
- Allows you to run situational analysis and projections
- Establishes a baseline for where your network stands
- Improves decision making on what treatments should be used where and when
- Saves time (and money) when scoping and bidding your projects each year

Cost Benefit Value

Example #1

	Traffic (AADT)	Condition (PCI)	Required Treatment
Road #1	5000	30 (poor)	FDR
Road #2	5000	75 (good)	Single Seal

Which project has the highest CBV?

$$CBV = (AADT) X (Life)$$

$$(Unit $) X (PCI)$$

Road #1 CBV =
$$\frac{(5000) \times (20)}{(25) \times (30)}$$
 = 133

Road #2 CBV =
$$(5000) \times (5)$$
 = 167 (Single Seal Candidate) $(2) \times (75)$

For equal traffic, preservation should have the highest benefit

Example #2

- 8 road network
- 2 roads in each of 4 repair type categories:
 - Major Rehabilitation
 - Minor Rehabilitation
 - Preventive Maintenance
 - Routine Maintenance

Which roads should get done first?

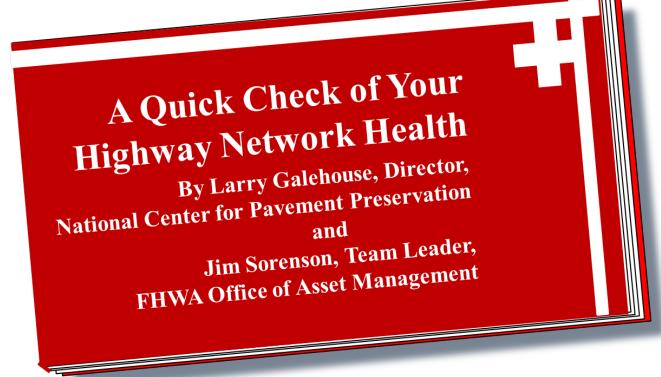
"Worst First" Project Prioritization

Street Name	Condition (RSR)	Recommended Repair Type	Unit \$	AADT	Service Life of Repair (years)
South Road	30.2	Full-Depth Reclamation	\$25.00	300	20
Arthur Ave.	30.5	Full-Depth Reclamation	\$25.00	5000	20
Canal Street	59.7	Mill and Overlay	\$12.00	700	12
Beach Street	60.0	Mill and Overlay	\$12.00	4000	12
Williams Ave.	71.1	Double Surface Treatment	\$4.25	500	8
Adams Street	71.4	Double Surface Treatment	\$4.25	3500	8
Thom Avenue	87.9	Crack Seal	\$0.50	800	2
Midway Road	88.1	Crack Seal	\$0.50	5000	2

CBV Project Prioritization

Street Name	Condition (RSR)	Recommended Repair Type	Unit \$	AADT	Service Life of Repair (years)	CBV
Midway Road	88.1	Crack Seal	\$0.50	5000	2	227
Arthur Ave.	30.5	Full-Depth Reclamation	\$25.00	5000	20	131
Adams Street	71.4	Double Surface Treatment	\$4.25	3500	8	92
Beach Street	60.0	Mill and Overlay	\$12.00	4000	12	67
Thom Avenue	87.9	Crack Seal	\$0.50	800	2	36
Williams Ave.	71.1	Double Surface Treatment	\$4.25	500	8	13
Canal Street	59.7	Mill and Overlay	\$12.00	700	12	12
South Road	30.2	Full-Depth Reclamation	\$25.00	300	20	8

CBV – Show some method to your project selection process!


Remaining Service Life

Remaining Service Life

Simple (but effective) planning, education and communication tool:

Available at:

http://www.fhwa.dot.gov/pavement/pub_details.cfm?id=478

A Quick Check of Your Highway Network Health

Remaining Service Life (RSL) Concept

- Every road segment has a Remaining Service Life
- 100 miles with NO REPAIRS or MAINTENANCE in a given year, will lose 100 mile-years of Remaining Service Life
- Annual work plans should match condition goals ("outcome based budgeting")

For Each Treatment Used:

Added Network Service Life =

Miles **Treatment**

Service Life of **Treatment**

RSL Example

Network = 100 miles

Budget= \$1,000,000 (\$0.71/SY)

"Worst First" or Preservation?

Which program will add more service life?

Pavement Network Evaluation Worksheet Total Network Lane Miles =

Reconstruction						
Project	Design Life		Lane Miles	Lane Mile Years	Lane Mile Cost	Total Cost
FDR		X		=		
			Tota	=	Total =	
Rehabilitation						
Project	Design Life		Lane Miles	Lane Mile Years	Lane Mile Cost	Total Cost
CIPR		X		=		
Mill & Fill		Х		=		
		Total =		Total =		
Pavement Preservation						
Project	Design Life		Lane Miles	Lane Mile Years	Lane Mile Cost	Total Cost
UTBO		X		=		
Micro surfacing		X		=		
Chip Seal		Х		=		
Fog Seal		Х		=		
Crack Seal		Х		=		
			Tota	l =	Total	=

Network Trend

Strategic Summary

"Worst First"

Programmed Activity	Miles	Mile Years	Total Cost	Programmed Activity
Reconstruction	1	20	\$352,000	(Mile-Years) = 70
Rehabilitation	4	50	\$661,760	minus Total Network 100
Preservation	0	0	\$0	(Mile-Years) =
Totals:	5	70	\$1,013,760	Gain (+) / Deficit (-) = -30

Preservation

Programmed Activity	Miles	Mile Years	Total Cost	Programmed Activity	
Reconstruction	0.5	10	\$176,000	(Mile-Years) =	123
	0.0	. 0	ψσ,σσσ	minus	-
Rehabilitation	2	25	\$330,880	Total Network	100
Preservation	21	86	\$492,800	(Mile-Years) =	
				Gain (+) / Deficit (-)	00
Totals:	23.5	123	\$999,680	=	23

How much newly added network service life did Town X achieve last year?

Shim & Overlay

0.6 Miles Shim & Overlay =

0.6 Miles **Treatment**

10 Years 10 Years of Service Life

Full Depth Reclamation

1.0 Miles Full Depth Reclamation =

1.0 Miles **Treatment**

20 Years of Service Life

Example Agency

New Service Life

Based on 60 Network Miles

- Shim & Overlay Paving
- Full Depth Reclamation

= 6 Mile-Years

= 20 Mile-Years

New Service Life Added

Pavement Life Lost

= 26 Mile-Years

= (60) Mile-Years

2020 Program Shortfall = 34 Mile-Years

Shim & Overlay – Optimized Program

0.3 Miles Shim & Overlay=

0.3 Miles **Treatment**

10 Years
of Service Life

Full Depth Reclamation – optimized program

0.5 Miles Full Depth Reclamation =

0.5 Miles **Treatment**

20 Years
of Service Life

Crack Seal – Optimized Program

6.0 Miles Crack Seal=

6.0 Miles **Treatment**

3 Years
of Service Life

Single Seal – optimized program

6.0 Miles Single Seal=

6.0 Miles **Treatment**

5 Years of Service Life

Example Agency

New Service Life

Based on 60 Network Miles

- Shim & Overlay Paving
- Full Depth Reclamation
- Crack Seal
- Single Seal

New Service Life Added

Pavement Life Lost

= 3 Mile-Years

= 10 Mile-Years

= 18 Mile-Years

= 30 Mile-Years

= 61 Mile-Years

= (60) Mile-Years

2021 Program Gained = 1 Mile-Years

Summary / Key Takeaways

- Understand the value of your roads
- Having a plan is the key to a successful program
- Each community is different no "one size fits all" approach
- Process does not have to be complex
- Once completed, communicate your results and plan
- Continuously update the information and plan
- Use the data to help make critical decisions

